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Nanoporous materials, can present an outstanding range of mechanical properties. Both molecular
dynamics and dislocation analysis were used to evaluate and quantify the evolution of plasticity in a por-
ous Ta single crystal containing randomly placed voids with 3.3 nm radii and average initial porosity of
4.1%, when subjected to uniaxial compressive strain. Nanovoids act as effective sources for dislocation
emission. Dislocation shear loops nucleate at the surface of the voids and expand by the advance of
the edge component. The evolution of dislocation configuration and densities were predicted by the
molecular dynamics calculations and successfully compared to an analysis based on Ashby’s concept of
geometrically-necessary dislocations. Resolved shear stress calculations were performed for all bcc slip
systems and used to identify the operating Burgers vectors in the dislocation loops. The temperature
excursion during plastic deformation was used to estimate the mobile dislocation density which is found
to be less than 10% of the total dislocation density.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Metallic foams exhibit an outstanding range of properties
obtained through the tailoring of void configuration and size
[1–4]. The reduction in size of the voids in metals leads to high
strength levels that are enabled by nanoscale effects. Biener et al.
[1] demonstrated that nanoporous gold can reach a flow stress of
4.5 GPa. This is akin to the results of nanopillar strength by Greer
et al. [5] and Nix et al. [6]. Kim et al. [7] also showed strong size
effects in nanopillars (both in compression and tension) for various
bcc metals, including Ta. In addition to the high strength achieved
in nanofoams, their effectiveness in radiation resistance has been
proposed. This is due to the size of the ligaments which, if properly
chosen, produces a ‘‘self-healing’’ foam [3]. The nanoscale foams
inhibit the formation of the collision cascade by providing sinks
for the radiation induced defects. In addition to high porosity
metallic foams as the ones described above, there are samples with
low porosity at the nanoscale, like radiation damaged samples [8],
or pre-spalled samples [9,10], where mechanical properties of
samples are also of interest.

In the last few decades there has been a tremendous advance in
the understanding of plasticity under extreme conditions such as
the high pressures and strain rates achievable by shock compres-
sion. The extremely high strain rates obtained with laser compres-
sion (107–109 s�1) and the ultrashort durations (1–10 ns) of the
pressure pulse render this technique a unique tool to explore
extreme regimes of plastic deformation, pressure, strain rate and
temperature. Although plastic deformation is being studied inten-
sively experimentally through the characterization of recovered
specimens, direct simulations provide important insights into the
dynamic processes of plastic deformation. Experiments that probe
pressure-induced nanovoid collapse at the relevant nanoscopic
length and ultrashort time scales are extremely difficult or impos-
sible with current set-ups, while continuum models might not
work at the nanoscale. Reisman et al. [8] measured VISAR profiles
of a sample with a collection of radiation-induced voids, and were
able to reasonably fit their data using a dislocation-based model
with a size-dependent plastic threshold for the voids. Several
authors [11–13] showed how molecular dynamics simulations
can be coupled with laser-driven shock experiments to provide
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insight into the plastic deformation mechanisms in such extreme
regimes.

Despite these advances, nano-scale plasticity under extreme
conditions remains poorly understood for bulk materials, and even
more so for materials including porosity, where there are relatively
few studies. Nanoscale porosity appears in many different scenar-
ios: radiation damage [8], laser ablation [14], incipient spall [9],
metallic and non-metallic nanofoams [15], etc. The understanding
of the role of porosity on mechanical behavior is important for the
assessment and development of materials such as metallic foams
[1], and materials for new fission and fusion reactors [3], with
improved mechanical properties.

Although there are a number of studies focusing on single voids
in fcc [16–20] and bcc metals [21–25], void assemblies and the
more general problem of a porous metal have not yet been
thoroughly investigated in simulations, except for relatively few
studies [10,18,26,27].

We aim to develop a mechanistic understanding of the micro-
structural changes induced by high strain rate compression of a
material with nanoscale porosity. For that purpose, and given the
typical size limitations of molecular dynamics, we chose to conduct
this study by adding a few nanovoids to a bulk bcc Ta sample reach-
ing a relatively low porosity (�4%) [26]. We found that dislocation
production leads to an anomalous Taylor type relationship between
dislocation density and stress, and that porosity collapse was di-
rectly related to plastic activity. In this study we focus on a detailed
analysis of dislocation activity including activated dislocation sys-
tems and dislocation velocity, and present models to account for
the lower plastic threshold, as compared to the case of a single void,
and for the resulting density of geometrically necessary disloca-
tions (GNDs). We also analyze plastic heating during void collapse
and several other aspects of the evolution of the sample under com-
pression. Although we are focusing here on a material with a low
void fraction, the size of the voids and the acquired ligaments can
be compared to those found in novel yet-laboratory scale nanofo-
ams and therefore get that the conclusions reached herein can be
extrapolated to higher porosities, in the regime of importance for
both mechanical performance and radiation resistance.
Fig. 1. Stress–strain curve for void collapse under uniaxial strain. Void radius is
3.3 nm. Yield strains at which defects start to nucleate are indicated by arrows. The
elastic modulus reduction in our simulation is a direct consequence of the porosity.
2. Computational modeling

The compression simulations were performed with LAMMPS
[28] and bcc Ta was modeled with an extended Finnis–Sinclair
potential [29]. Based on static equilibrium simulations, this poten-
tial predicts pressure–volume relations comparable to experimen-
tal data [29]. It gives generalized stacking-fault energies
comparable with ab initio results [24], and it has been used in
previous work on void collapse [24–26], as well as rapid compres-
sion of bcc metals [30,31]. Non-equilibrium shock simulations are
a challenge for empirical potentials because solid–solid phase tran-
sitions [32,33] or soft-phonon modes [34] may appear artificially.
No artificial behavior that may affect our simulations is known
for pressures under 60 GPa, being 50 GPa the maximum pressure
reached in our studies.

The simulation domain was initially set up as a cubic sample
containing 1003 unit cells. Ten spherical voids with radii of
�3.3 nm where created inside the sample, with an average
distance (between void surfaces) of 10.5 nm, resulting in a 4.1%
volume fraction of voids and 1.9 million remaining atoms. Periodic
boundary conditions were imposed in all directions. The sample
was equilibrated to zero pressure at an initial temperature of
300 K.

A uniaxial compressive strain rate of 109 s�1 was applied in the
[001] direction for 200 ps, resulting in a total of 20% volume strain.
Lateral strains were impeded. This strain state simulates early
stages of laser shock compression experiments [11,12,35–37]. A
1 fs time step was chosen and the simulation was run with a
constant NVE integration consistent with the micro-canonical
ensemble. In this manner, no temperature control was imposed
and we were able to measure temperature effects produced by
plastic activity.

Defect tracking was done by means of the Common Neighbor
Analysis (CNA) [38], a structural filter known to be suitable for
bcc metals. During the computational run, non-bcc atoms were
filtered by the built-in CNA available in LAMMPS. An improved ver-
sion [39] of the recently developed dislocation extraction algo-
rithm technique (DXA) [40], was also used to identify line and
surface defects. Visualization of dislocations and void surfaces
was performed using VMD [41] and ParaView [42].

3. Results

The computational procedures for the global stress–strain
response and resolved shear stresses are explained in Sections
3.1 and 3.2 respectively. The dislocation activity is discussed in
Section 3.3 and dislocation densities were computed indepen-
dently in Section 3.4 (CNA), Section 3.5 (DXA), Section 3.6 (Mobile
dislocation density) and Section 3.7 (geometrically-necessary
dislocations).

3.1. Global uniaxial stress–strain response

The stress in the loading direction, rzz, was monitored during
the simulation and is plotted in Fig. 1, next to the calculations of
Tang et al. [24] for a sample of the same dimensions containing a
single void of 3.3 nm radius. The stresses at the point where plastic
flow starts are marked by arrows. As one might expect, the stress is
about 20% lower in the sample with ten voids than for a single void.
Wu and Markenscoff [43] calculated the singular stress amplifica-
tion between two holes of equal radius r, showed in Fig. 2. The sim-
plest form of this calculation is given, for uniaxial loading and at a
point midway between the two holes, where this amplification,
rmax, is highest:
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where r1 is the stress at an infinite distance from the holes, r is the
hole radius, and d is the distance between the edges of the holes.
The minus sign corresponds to the hole centers aligned with the



Fig. 2. Schematic showing interaction of two voids considered as limiting config-
urations by Wu and Markenscoff [43] (a) void center axis parallel to loading
direction, and (b) normal to loading direction.

Table 1
Resolved shear stresses on the 12 slip systems corresponding to families of 110f g slip
planes and 12 slip systems for families of 112f g slip planes; uniaxial strain
compression of tantalum along [001].

Slip plane 110f g RSS (GPa) Slip plane 112f g RSS (GPa)

(011)[11 �1] 35.6 �33 (112)[11 �1] 41.1 �33

(011)[�11 �1] 35.6 �33 (�112)[�11 �1] 41.1 �33

(01 �1)[111] 35.6 �33 (1 �12)[1 �1�1] 41.1 �33

(01 �1)[�111] 35.6 �33 (11 �2)[111] 41.1 �33

(101)[11 �1] 35.6 �33 (1 �21)[111] 20.6 �33

(101)[1 �1�1] 35.6 �33 (�211)[111] 20.6 �33

(10 �1)[111] 35.6 �33 (211)[�111] 20.6 �33

(10 �1)[1 �11] 35.6 �33 (12 �1)[1 �1�1] 20.6 �33

(110)[1 �11] 0 (21 �1)[1 �11] 20.6 �33

(110)[1 �1�1] 0 (121)[1 �11] 20.6 �33

(1 �10)[111] 0 (�121)[11 �1] 20.6 �33

(1 �10)[11 �1] 0 (2 �11)[11 �1] 20.6 �33
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axis of loading and the plus sign to the perpendicular alignment.
Fig. 2 shows the two configurations, considered as limits by Wu
and Markenscoff [43]. Although this is a two-dimensional analysis,
it provides a good first order estimate of the stress amplification.
The case of multiple voids can be roughly approximated as the
one for two voids, since the stress amplification decreases fairly
rapidly with distance. In the present case, the average d is
�10.5 nm. Applying these values to Eq. (1), we obtain:
rmax � r1 ð2Þ

for longitudinal tension (hole center axis parallel to loading) and

rmax � 2:1r1 ð3Þ

for transverse tension (hole center axis normal to loading).
For a random arrangement of voids, we can assume that the

amplification falls in between these two limiting cases. The mea-
sured ratio of the (remote) compressive stresses leading to disloca-
tion nucleation for an isolated void, r1v [24] and the void
assemblage, r10v , is consistent with the theoretical model de-
scribed above:
r1v

r10v
¼ 15:5 GPa

13 GPa
� 1:2 ð4Þ

Thus, the presence of voids leads to the creation of ligaments
that amplify the local stresses and decrease the far field tractions
required for dislocation loop emission. The closest void to the void
where the first dislocation emission occurs is located roughly at
45� in a planar projection and, therefore, in between the limiting
cases of longitudinal and transverse location, justifying our
approximation of taking an average amplification stress.

3.2. Analysis of the resolved shear stresses

In the simulation setup, the sample was subjected to a uniaxial
strain along [001] direction:

�ij ¼
0 0 0
0 0 0
0 0 �33

2
64

3
75 ð5Þ
where �33 is the elastic strain prior to the onset of plasticity. The
corresponding stress state is obtained from,

rij ¼ Cijkl�kl ð6Þ

Cijkl is the elastic stiffness matrix in the simulation coordinate
system ([100], [010], [001]). For the Ta potential used [29], the
stiffness matrix in GPa is:

Cijkl ¼

230:8 143:5 143:5 0 0 0
143:5 230:8 143:5 0 0 0
143:5 143:5 230:8 0 0 0

0 0 0 91:3 0 0
0 0 0 0 91:3 0
0 0 0 0 0 91:3

2
666666664

3
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ð7Þ

Applying Eqs. (5) and (7) into Eq. (6), we obtain the principal
stresses:

rij ¼
143:5 0 0

0 143:5 0
0 0 230:8

2
64

3
75�33ðGPaÞ ð8Þ

The triaxial stress state requires an analysis more complete that
the common Schmid factor computation. It is important to know
the resolved shear stresses for the bcc slip systems since it is
reasonable to expect that one or more of these systems will be acti-
vated once plasticity develops. Therefore, we proceed with a trans-
formation as already applied by Cao and co-workers [44] to Cu
crystals following the formulation available (e.g. [45]),

r0ij ¼ likljlrkl ð9Þ

where lik and ljl are the cosines of the angles between the coordinate
system of the slip plane and the crystallographic axes. Performing
this transformation for the 48 bcc slip systems including the
110f g; 112f g and 123f g families of slip planes allows us to calculate

the resolved shear stresses in terms of �33. These values are reported
in Table 1 for 110f g and 112f g, and Table 2 for 123f g. The calcu-
lated values are an indication of the driving stress on the slip sys-
tems prior to plastic flow. The relative closeness of the resolved
shear stress values for several slip systems in the three families
gives further support to the peculiar character that was identified
by Tang et al. [24]. The results presented in Tables 1 and 2 show that
the four slip directions [111], ½�111�, ½1�11�, and ½11�1� (and their neg-
atives ½�1�1�1�, ½1�1�1�, ½�11�1�, and ½�1�11� are included in the systems with
the highest resolved shear stresses. Considering, as an example, the
[111] slip direction, the planes with highest resolved shear stress
are:



Table 2
Resolved shear stresses on the 24 slip systems corresponding to the family of 123f g
slip planes; uniaxial strain compression of tantalum along [001].

Slip system 123f g RSS (GPa) Slip system 123f g Cont. RSS (GPa)

(123)[11 �1] 40.4 �33 (132)[1 �11] 26.9 �33

(�123)[�11 �1] 40.4 �33 (�132)[11 �1] 26.9 �33

(1 �23)[1 �1�1] 40.4 �33 (1 �32)[111] 26.9 �33

(12 �3)[111] 40.4 �33 (13 �2)[�111] 26.9 �33

(213)[11 �1] 40.4 �33 (231)[1 �11] 13.5 �33

(�213)[1 �11] 40.4 �33 (�231)[11 �1] 13.5 �33

(2 �13)[�111] 40.4 �33 (2 �31)[111] 13.5 �33

(21 �3)[111] 40.4 �33 (23 �1)[�111] 13.5 �33

(312)[�111] 26.9 �33 (321)[�111] 13.5 �33

(�312)[111] 26.9 �33 (�321)[111] 13.5 �33

(3 �12)[11 �1] 26.9 �33 (3 �21)[11 �1] 13.5 �33

(31 �2)[1 �11] 26.9 �33 (32 �1)[1 �11] 13.5 �33
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(11�2)[111] 41.1 �33 (GPa).
(21�3)[111] 40.4 �33 (GPa).
(01�1)[111] 35.6 �33 (GPa).
(10�1)[111] 35.6 �33 (GPa).

It is clear that the differences are relatively small, and that in-
deed the ð11�2Þ slip plane provides the highest resolved shear
stress. This explains the easy fluctuation in slip planes that is well
known in bcc metals. For instance, the two slip planes (01 �1) and
(10 �1) can combine as (11 �2), thus the change from (01 �1) and
(10 �1) to (11 �2) increases the stress and should occur easily.

It should also be pointed out that the use of the resolved shear
stress criterion has some caveats in bcc metals. The reason for this
being the multiple shear stress components that affect the glide of
screw dislocations, modifying the dislocation core structure and
causing a breakdown of the Schmid law [46–48]. For Ta, a Group
VB metal, the screw dislocation core has a sixfold symmetric, non-
degenerate structure, with small twinning–antitwinning asymme-
try and weak interaction with non-glide applied stress components
[49]; therefore, it is reasonable to expect that dislocations will
nucleate in available slip systems with a probability associated with
the RSS. Sherwood et al. [50] showed that the tension–compression
asymmetry produced by core effects is no longer present at 300 K.
3.3. Dislocation activity

MD simulations confirm that the primary mechanism of plastic
deformation is the formation of loops, which nucleate at the ledges
provided by the void surfaces. A conventional atomistic visualiza-
tion of the filtered structures reveals that dislocations start to
nucleate at a strain of 5.5%, with clear dislocation loop formation
at a strain of 5.6%. The evolution of dislocations and void configu-
rations for strains varying from 5.6% to 10% are shown in Fig. 3.

As the applied strain increases, these loops evolve primarily
through the high mobility of the edge component. Fig. 4a provides
three views along [100], [010], and [001] direction of the same
void at an applied strain of 6.5%. It can be seen that at least six
loops have formed. They are characterized by straight sides, corre-
sponding to the screw component of the dislocation, and a bowed
out front, corresponding to the (primarily) edge component of the
dislocation. The shear loop directions are analyzed in Fig. 4b and
the directions [1 �1�1], [1 �11], [11 �1], [�11 �1] and [�111] are identified.
The other loops are in the back of the void and therefore cannot be
seen in this view.

Similar to what was observed by Tang et al. [24], there is some
fluctuation in slip planes at the front. Fig. 5 shows details of one
loop and the schematic distribution of slip planes.

In spite of 112f g slip planes having the highest resolved shear
stress (15% higher than 110f g planes), nucleated dislocations
evolve mainly on 110f g slip planes, since 110f g planes are the clos-
est packed planes in the bcc lattice and thus have a relatively lower
critical resolved shear stress (CRSS) required for dislocation nucle-
ation. This is also evidenced by the fact that the maximum stacking
fault energy of 110f g planes is lowest for those planes [23]. 110f g
slip was also found by Tang et al. for a single void in Ta [24].

While twinning is known to occur in Ta during high strain rate
deformation [51], no twinning was found in our simulations. Of
course, simulation details might influence twinning. Simulations
for a single void have been carried out with much larger samples
(tens of millions of atoms) and do not lead to significant differences
regarding twinning, but we note that there might be other long-
time scale dislocation reactions beyond the reach of atomistic sim-
ulations, which might also contribute to twinning. We have also
carried out simulations for a single void with a new Ta potential
[33] and observed a similar outcome [52]. Of course, there are
many factors affecting twinning. Loading orientation will influence
twinning [21,52,53], and twinning has been reported for atomistic
simulations of voids in Ta under homogeneous [001] tension
[23,25], but never for homogeneous [001] compression [21,25].
Use of non-equilibrium shock loading simulations [54] does lead
to some twinning for [001] compression resulting from dislocation
junctions in a dense dislocation forest. Therefore, appropriate
nucleation sites for twinning, such as dislocation junctions and
long screw dislocations themselves [20],which are present in
experimental conditions but are missing here, might also contrib-
ute to the absence of twinning in the current MD simulations. In-
deed, addition of grain boundaries as nucleation sites leads to
twinning in nanocrystalline Ta [31]. Despite the limitations of
atomistic simulations, our results are consistent with recent exper-
imental results [53] for single crystal Ta shock loaded and recov-
ered, showing less than 3% twin fraction for a shock pressure of
55 GPa, which is close to the maximum pressure reached here.

No prismatic loops were observed in the current simulations, in
contrast with simulations by Rudd [23] and Tang et al. [24]. They
demonstrated that prismatic loops formed in hydrostatic loading
when the shear loops expand equally. In the current simulations,
the shear loops do not react to form prismatic loops. This reaction
needs sufficient space to develop but in our simulations, before the
reaction occurs, the shear loops from one void encounter shear
loops from voids in the vicinity. Uniaxial compression prevents
the intersection of shear loops in the way necessary for prismatic
loop formation.

Approximate values for the dislocation velocities were obtained
from our MD simulations, by a procedure similar to that described
for fcc crystals by Davila et al. [55] and Bringa et al. [20]. The dis-
location velocities in uniaxial compressive strain for our tantalum
simulation are calculated by tracking the dislocation front as a
function of time. Prior to significant dislocation–dislocation inter-
action, the velocities at a strain rate of 109 s�1 varied between
600 and 1200 m/s; these values are in the subsonic regime, since
for the [001] direction, the transverse sound velocity for Ta is
�2000 m/s [29]. Dislocation interaction caused a reduction in
velocity. Using the same procedure employed by Tang et al. [24],
we find that our results are in very good agreement with the linear
extrapolation of Deo et al. [56] and Tang et al. [24] for T = 300 K, as
shown in Fig. 6. It must be noted, however, that as Jin et al. [57] and
Marian et al. [21] had previously shown, dislocation mobility in bcc
metals is extremely complex.
3.4. Total dislocation density using CNA filtering

The total dislocation density, qd, was calculated as the total
length of all dislocation lines, l, divided by the volume of our
simulated box, Vdef :



Fig. 3. Evolution of dislocations and voids up to 10% strain. Snapshot at 5.6% includes a zoom with the nucleation of the first dislocation loop. Every 0.5% strain increment
corresponds to 5 ps evolution.
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qd ¼
l

Vdef
ð10Þ

The length l can be expressed as:

l ¼ Ndnn

s
ð11Þ

where N is the number of non-bcc atoms associated at a given time-
step with dislocation cores, according to the CNA filter, with a cut-
off of 0.414 nm [24], and excluding those atoms originally identified
as belonging to void surfaces. dnn is the average distance between
atoms in the dislocation, here taken to be 0.286 nm, equal to the
Burgers vector. s is the cross-section of a typical dislocation, mea-
sured by the number of atoms that form the dislocation core for a
particular type of filter.

This was done following Bringa et al. [58] and Shehadeh et al.
[59], first by computing the number of atoms, N, that belong to dis-
location cores, and then substituting Eq. (11) into Eq. (10), yielding:
qd ¼
Ndnn

sVdef
ð12Þ

Visualization of non-bcc atoms reveals that the dislocation
cores have a typical cross-section of approximately 10 atoms, as
seen in Fig. 4. For fcc structures, partial dislocations typically
appear with a cross section of 2–4 atoms, when selected with a
centro-symmetry filter [59]. The evolution of the dislocation den-
sity is shown in Fig. 7. Once plastic activity initiates, the total dis-
location density rapidly increases to values consistent with those
of metals subjected to high work-hardening (1015–1017 m�2), but
above 10% strain, the level of noise in our detector makes identifi-
cation difficult. CNA uses a neighbor search within a spherical shell
and, therefore, might provide results which are inappropriate for
large uniaxial strains. Consequently, the calculated dislocation
densities for strains above 12% should be taken with care. In addi-
tion, the CNA filtering gives an increasing contribution of point de-
fects as strain increases, which leads to artificially high dislocation
densities.



Fig. 4. Snapshot of an isolated void at 6.5% strain. Top sequence shows the void seen from the three principal orientations. Detailed analysis of the dislocation cores reveals
the activation of several bcc slip planes and curving of the front.
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3.5. Total dislocation density using the dislocation extraction
algorithm: DXA

In order to verify the dislocation density estimated from the
number of non-bcc atoms, we also measured the density using a
recently developed analysis technique. The so-called dislocation
extraction algorithm (DXA) [39,40] processes an atomistic simula-
tion snapshot to identify all dislocation defects in the crystal lat-
tice. It outputs a geometric line description of the extracted
dislocation network and determines the Burgers vectors of individ-
ual dislocation segments. The total dislocation density can be cal-
culated directly from the discretized line representation of the
dislocations. In contrast to the counting-based method for estimat-
ing the dislocation density described before, the results obtained
with DXA are not affected by the presence of non-dislocation de-
fects, which can be effectively eliminated by means of a Burgers
circuit test. Fig. 7 shows the measured dislocation density next to
the results obtained by CNA only. Both curves are in excellent
agreement up to 14% strain. In contrast with the continuously
increasing density measured by CNA only, the DXA saturates at
high strains. Fig. 8 shows both the conventional atomistic visuali-
zation of the simulated system and the defect visualization pro-
duced with the DXA tool. In Fig. 9 we produce a set of pictures
corresponding to the dislocation forest evolution for strains above
16%. As shown in Fig. 8, the conventional atomistic visualization of
the system is essentially saturated with defects above 10% strain,
but the DXA tool allows us to see the individual dislocations up
to the final strain.
3.6. Mobile dislocation density

In an effort to understand the plastic behavior of our nanopor-
ous sample, the amount of plastic work is an important quantity to
be evaluated. Orowan [60] expressed the kinematic relationship
between the plastic strain rate _cp, in terms of the mobile disloca-
tions density, qm, and the mean velocity, �v , for all dislocation lines
in the crystal:
_cp ¼ bqm �v ð13Þ

where b is the Burgers vector (b ¼ 0:286 nm, for bcc Ta).
It is possible to estimate the mobile dislocation density, pro-

vided the temperature and stress evolution are known. The tem-
perature evolution is shown in Fig. 10. As plastic activity starts
developing, a complex process of emission and motion of disloca-
tion initiates, giving the increase in slope from the purely elastic
stage I to stage II, the high slope being the result of the high speed
gliding of an important fraction of edge dislocations. The voids are
completely collapsed at 14% strain, marking the beginning of stage
III, where dislocation movement is more restricted, lowering the
slope of the still increasing temperature evolution.

The temperature rise associated with plastic deformation can be
expressed in a simplified fashion as:

dT ¼ b
Cq

sðtÞdc ð14Þ

where C is the specific heat capacity equal to 140 J/(Kg K), q is the
material density, sðtÞ is the time dependent shear stress, and b is
an empirical parameter that represents the fraction of rate of plastic
work dissipated as heat [61]. It has been shown that b can take val-
ues as low as 0:7 in some cases [62]. The Quinney–Taylor parameter
b accounts for the fraction of the work accumulated in the metal
(elastic stresses stored through dislocations). Here we assume a va-
lue equal to 0:9 based on the recent results by Rittel et al. [63], that
show that even though this value is material and condition depen-
dent, for single crystals subjected to high strain rate it takes values
very close to unity.

Taking the time derivative and substituting Eq. (13) into Eq.
(14), which can be found in detail in Ref. [64], the mobile disloca-
tion density could be expressed as,

qm ¼
Cq

sðtÞbb�v
dT
dt

ð15Þ

dT=dt is the rate of rise of the temperature, which can be extracted
from Fig. 10. b is the Burgers vector, and �v the average dislocation
velocity. This equation can also be derived from a contribution by



Fig. 5. A detailed representation of the character of dislocations in typical loop is shown in (a) at 6.5% strain. The central part of the loop is an edge dislocation, whereas the
sides are screw segments. In (b) the schematic drawing shows how the slip plane (1 �12) by virtue of the combination of (101) and (0 �11) elements, as observed by Tang et al.
[24]. The screw components of the dislocation loop can and do cross-slip whereas the front (edge) cannot. This leads, in some cases, to the curving of the front and changing
slip planes.

Fig. 6. Dislocation velocity vD as a function of the stress, normalized with the
Peierls Nabarro stress as in [24]: comparison of current results with earlier studies
[56,24].

Fig. 7. Dislocation density calculated using different methods as a function of
strain. Four computational methods shown: Common Neighbor Analysis (CNA);
dislocation extraction algorithm (DXA); geometrically-necessary dislocations
(GNDs). There is reasonable agreement among the three procedures (CNA, DXA,
and GND). Mobile dislocation densities estimated from plastic heating, assuming
two velocities. Mobile dislocations are only a small fraction (�0.1) of total
dislocation density.
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Fig. 8. Snapshot at 12% strain. Comparison of (a) a conventional atomistic visualization using CNA filtering and (b) a geometric line visualization of the dislocations provided
by the DXA. In addition to extracting the dislocation line network, the DXA analysis also produces a geometric representation of non-dislocation defects, such as void surfaces.

Fig. 9. Snapshots using DXA for 18% and 20% strain. Dislocation density saturates at the full collapse of voids (14%).

Fig. 10. Temperature evolution showing the three distinctive stages mentioned in
the text. Stage I – elastic compression heating, Stage II – plastic heating due to
dislocation emission and void collapse, Stage III – plastic heating due to interaction
of high density dislocation forest.
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Higginbotham et al. [64] for a material with a well defined compli-
ance, and with a single dislocation dipole subjected to rapid shear
strain. The results of Higginbotham et al. [64] were for a set of con-
ditions not entirely met in our study, therefore, we emphasize that
the methodology as applied here only provides a rough approxima-
tion for the mobile dislocations.

To account for the variable dislocation velocities mentioned be-
fore, and considering as a first approximation that screw segments
are immobile, the calculation was performed for dislocation veloc-
ities with a lower value of 600 m/s and an upper value of 1200 m/s.
Fig. 7 shows the mobile dislocation densities obtained for the two
dislocation velocities chosen. At this point, it must be emphasized
that only the dislocation edge components were used in the cur-
rent study and, due to their limited mobility, screw components
were regarded as immobile and resulting from the advance of
the edge components as slip progress.

The length of each shear loop can be roughly estimated by con-
sidering that it is composed of three parts, as shown in Fig. 11. The
collapse of the voids is enabled by the movement of the edge com-
ponent of the dislocation loops. In bcc metals, the edge dislocations
have a much higher mobility than screw dislocations. The edge dis-
location front has a length L2 ¼ pr=2

ffiffiffi
2
p

, where r is the void radius,
being this a first approximation as shown in Fig. 11. The length of
the screw components increases from L1 ¼ 0 to L1 � 10:5 nm as the
loop expands. The fraction of mobile dislocations, f can be approx-
imately expressed as:

f ¼ L2

2L1 þ L2
ð16Þ
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It decreases from f = 1 to 0.15 as a first generation of loops
leaves the surface and impinges on the opposing voids. As expected
from the snapshots of the dislocation evolution, when dislocation
activity starts, the total density and the mobile density are similar,
but the rapid formation of junctions leads to a decrease in mobile
dislocations with respect to the total number of dislocations, with
a difference of one order of magnitude at 10% strain.
3.7. Geometrically necessary dislocations

Assuming that the complex interaction of dislocations from dif-
ferent voids can be neglected, the total dislocation length around a
collapsing void can be estimated by means of Ashby’s concept of
geometrically necessary dislocations (GNDs) [65–67]. This can be
done in an approximate manner by assuming that the dislocation
loops transport matter into the voids [19]. In agreement with Tang
et al. [24] and Marian et al. [21,22], loops remain attached to void
surfaces during uniaxial compression [68].

Fig. 3 shows that typically, eight dislocation loops are initially
nucleated on each void. Subsequently, other loops are also created
as the void shrinking proceeds. The length of each dislocation loop
Fig. 11. Top in-plane and lateral schematic representation of the reduction in
volume produced by emission of loops, as treated in the geometrically necessary
dislocations model.
can be roughly estimated by considering that it is composed of
three parts, as shown in Fig. 11. Therefore, for every emission i,
the total length of the eight loops can be taken as,

DLi
t ¼ 8 2Li

1 þ Li
2

� �
ð17Þ

where L1 is the length of the lateral screw component of each loop
and the edge component, L2, is considered as defined in the previous
section. The configuration is schematically shown in Fig. 11; we
assume that each loop expands a distance equal to half the distance
between its source and a neighboring void in the vicinity. We also
assume, that once these loops reach the loops coming from the
neighboring voids, the applied strain is accommodated by a new
emission of a loop set. Therefore, the total dislocation length
accumulating in the vicinity of the voids is,

Łi
total ¼ Li�1

total þ DLi
t ð18Þ

The dislocation contribution for each generation stage (emis-
sion and propagation of eight loops) is taken into account by Eq.
17, bearing in mind that the loop front gradually decreases in size
as the void radius is decreased. The formation of these eight loops
is assumed to shrink the void by a volume DVi for every emission i
(Fig. 11)

DVi � �2
ffiffiffi
2
p

pðri�1Þ2b ð19Þ

then the remaining void volume is

Vi ¼ Vi�1 � DVi ð20Þ

Reestablishing sphericity of voids, the resulting void radius, ri,
after an emission is:

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4p

� �
Vi3

s
ð21Þ

The strain is computed considering that the decrease in volume
due to the shrinking of the ten voids is accommodated by the
decrease in the vertical dimension, a3, in accordance to the uniaxial
strain conditions:

Vi
sample ¼ Vi�1

sample � 10DVi ¼ a1a2ai
3 ð22Þ

where a1 = a2 = 33.03 nm and a3 decreases in accordance to the
shrinkage of the voids,

ai
3 ¼

Vi
sample

a1a2
ð23Þ

The corresponding strain increment D�i is:

D�i ¼ ai�1
3 � ai

3

ai�1
3

ð24Þ

This calculation is repeated for eight emission generations and
the corresponding results are presented in Table 3. The strain
increments were subsequently added, so that,

�i ¼ D�i þ �i�1 ð25Þ

where in the case of i = 1, �i�1 = �0 = 0.055, the strain at the onset of
plasticity. Table 3 shows that, after eight generation/emission/prop-
agation steps, the void volume gets reduced to only ten percent of
the initial volume.

For simplicity, the work-hardened volume will be considered as
the spherical volume limited by the radius R (Fig. 11) and the
radius of the void, ri, therefore it is equal to

Vi
wh ¼

4
3
pðR3 � r3

i Þ ð26Þ



Table 3
Summary of results for the computation of geometrically-necessary dislocations.

Emission no. DV (nm3) Vi (nm3) ri (nm) Vwh (nm3) Ltotal (nm) Strain (%) qgnd (1016 m�2)

0 – 142.5 3.24 – – 5.5 0
1 �26.7 115.8 3.02 9087 112.8 6.2 1.2
2 �23.2 92.6 2.8 9111 223.2 6.9 2.4
3 �19.9 75.6 2.58 9130 332.1 7.4 3.6
4 �16.9 58.7 2.41 9144 438.9 7.9 4.8
5 �14.8 43.9 2.19 9158 544.4 8.3 5.9
6 �12.2 31.8 1.96 9171 647.7 8.65 7.0
7 �9.8 22 1.74 9180 749.2 8.9 8.1
8 �7.7 14.3 1.5 9188 848.7 9.1 9.2
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The dislocation density is finally defined as the ratio of Eqs. (18)
and (26).

qi
GND ¼

Li
total

Vi
wh

ð27Þ

The results of Table 3 are plotted in Fig. 7 for comparison (data
points marked with star). It is important to note that this model for
GNDs accounts for the successive loop generation needed to
accommodate the increasing applied strain. Beyond 10% strain
the dislocation forest is too complex to be analyzed with this
model.

4. Conclusions

The uniaxial compressive deformation of a porous Ta single
crystal with nanometer sized voids (radii �3.3 nm) was modeled
by molecular dynamics and analytical methods. This scenario can
be achieved by shock loading of nanofoams, re-shocking samples
with incipient spall, or re-irradiating samples with high power
lasers. The principal results are:

� Plasticity initiates at a lower applied stress and strain than the
values reported for a single void [24]. This is in accordance with
the stress amplification model of Wu and Markenscoff [43].
� Calculation of the resolved shear stress for all bcc slip systems

was performed for a uniaxial strain state and using the stiffness
matrix obtained from the potential used [29]. At the onset of
plasticity, � � 5%, the shear stress reaches the critical level for
the nucleation of dislocation loops. The analysis predicts eight
systems with equal shear stress for 110f g 111h i slip, in agree-
ment with MD results.
� The nanovoid surfaces act as effective sources for dislocations,

that nucleate and evolve during the plastic deformation process,
rendering strain accommodation by twinning unnecessary. The
lack of twinning in our simulations, which reach a maximum
pressure of �53 GPa, is consistent with a recent study for a
55 GPa shock of (001) single crystal Ta showing a twinning
fraction below few % [53]. Moreover, for a single void, neither
[22] nor [24,25] observe twinning for uniaxial compression
along the [001] direction, and the void-void interactions do
not seem to affect this situation.
� Dislocation velocities were calculated by tracking the advance

of their edge component, prior to strong loop-loop interaction.
All the calculated velocities are subsonic, and in the range of
600–1200 m/s. Very good agreement was found with the linear
extrapolation of the results by Deo et al. [56].
� Dislocation configurations were obtained by the DXA analysis

method [40] and compared with an approximate method using
CNA.
� Dislocation densities obtained (1016–1017 m�2) are comparable

to densities in simulations of shock loading in fcc metals at
similar strain rates [11,58]. The dislocation densities we find
in our simulations are similar to the predictions of the MTS
model, which predicts a saturation dislocation density of
�1016/m2 at a strain rate of 109/s [69]. Moreover, our calcula-
tions are also in agreement with experimental results for defor-
mation of Ta at high strain rates [51,70–72], indicating that
simulations at relatively short time scales can provide clues to
the microstructure of recovered samples for bcc metals.
� The temperature evolution obtained was expressed in terms of

the generation and movement of the dislocations and was
quantitatively used for estimating the mobile dislocation den-
sity which was found to be a fraction of the total density.
� The concept of geometrically necessary dislocations [65–67]

was used to estimate the total dislocation length around a
collapsing void, leading to a density of geometrically necessary
dislocations consistent with dislocation densities estimated by
the CNA and DXA estimations.
� Unlike recent porous compaction models [73,74] in which the

process of compaction and plasticity are separated and consid-
ered to act serially, with compaction occurs first and plasticity
later, this study shows that both processes occur in a coupled
manner. Therefore, simulations like the ones presented here
can be used to help parametrize more advanced compaction
models, and current porosity models [75,76] have to be used
with care when applied to nanoscale porosity.

Detailed understanding of plasticity in porous metals can lead
to the design of materials tailored for specific applications. The
work presented here provides an initial study useful for the devel-
opment of porous compaction model.
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